(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sum,
weightThey will be analysed ascendingly in the following order:
sum < weight
(6) Obligation:
TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yweight(
cons(
n,
cons(
m,
x))) →
weight(
sum(
cons(
n,
cons(
m,
x)),
cons(
0',
x)))
weight(
cons(
n,
nil)) →
nTypes:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
sum, weight
They will be analysed ascendingly in the following order:
sum < weight
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_cons:nil3_0(
n6_0),
gen_cons:nil3_0(
b)) →
gen_cons:nil3_0(
b), rt ∈ Ω(1 + n6
0)
Induction Base:
sum(gen_cons:nil3_0(0), gen_cons:nil3_0(b)) →RΩ(1)
gen_cons:nil3_0(b)
Induction Step:
sum(gen_cons:nil3_0(+(n6_0, 1)), gen_cons:nil3_0(b)) →RΩ(1)
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) →IH
gen_cons:nil3_0(b)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yweight(
cons(
n,
cons(
m,
x))) →
weight(
sum(
cons(
n,
cons(
m,
x)),
cons(
0',
x)))
weight(
cons(
n,
nil)) →
nTypes:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
weight
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
weight(
gen_cons:nil3_0(
+(
1,
n535_0))) →
gen_s:0'4_0(
0), rt ∈ Ω(1 + n535
0 + n535
02)
Induction Base:
weight(gen_cons:nil3_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
weight(gen_cons:nil3_0(+(1, +(n535_0, 1)))) →RΩ(1)
weight(sum(cons(0', cons(0', gen_cons:nil3_0(n535_0))), cons(0', gen_cons:nil3_0(n535_0)))) →LΩ(3 + n5350)
weight(gen_cons:nil3_0(+(n535_0, 1))) →IH
gen_s:0'4_0(0)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yweight(
cons(
n,
cons(
m,
x))) →
weight(
sum(
cons(
n,
cons(
m,
x)),
cons(
0',
x)))
weight(
cons(
n,
nil)) →
nTypes:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)
(14) BOUNDS(n^2, INF)
(15) Obligation:
TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yweight(
cons(
n,
cons(
m,
x))) →
weight(
sum(
cons(
n,
cons(
m,
x)),
cons(
0',
x)))
weight(
cons(
n,
nil)) →
nTypes:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)
(17) BOUNDS(n^2, INF)
(18) Obligation:
TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yweight(
cons(
n,
cons(
m,
x))) →
weight(
sum(
cons(
n,
cons(
m,
x)),
cons(
0',
x)))
weight(
cons(
n,
nil)) →
nTypes:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)